版权说明 操作指南
首页 > 成果 > 详情

CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Jinhua;Zhu, Hongye
通讯作者:
Zhu, HY
作者机构:
[Zhao, Jinhua; Zhu, Hongye] Cent ChinaNormal Univ, Cent China Normal Univ Wollongong Joint Inst, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
[Zhu, Hongye] Cent ChinaNormal Univ, Cent China Normal Univ Wollongong Joint Inst, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
通讯机构:
[Zhu, HY ]
Cent ChinaNormal Univ, Cent China Normal Univ Wollongong Joint Inst, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Classroom behavior recognition;coordinate attention (CA);feature extraction module (FEM);multiscale object detection;small object detection
期刊:
IEEE Transactions on Instrumentation and Measurement
ISSN:
0018-9456
年:
2023
卷:
72
页码:
1-12
基金类别:
This work was supported in part by the National Natural Science Foundation of China under Grant 72101189 and in part by the Fundamental Research Funds for the Central Universities of China under Grant CCNU22XJ006.
机构署名:
本校为第一且通讯机构
院系归属:
伍伦贡联合研究院
摘要:
Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, the existing methods for behavior recognition have limited accuracy due to issues, such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called ConvNeXt Block Prediction Head Network (CBPH-Net). Specifically, we design an efficient feature extraction module (FEM) to capture more channel information and relevant features from the images in the backbone net...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com