版权说明 操作指南
首页 > 成果 > 详情

Applications of Domain Adversarial Neural Network in phase transition of 3D Potts model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Xiangna;Liu, Feiyi;Deng, Weibing;Chen, Shiyang;Shen, Jianmin;...
通讯作者:
Liu, FY
作者机构:
[Yang, Chunbin; Liu, Feiyi; Deng, Weibing; Li, Wei; Chen, Xiangna; Liu, FY] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Liu, Feiyi; Deng, Weibing; Li, Wei; Liu, FY] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Liu, Feiyi; Papp, Gabor; Liu, FY] Eotv Lorand Univ, Inst Phys, 1-A Pazmany P Setany, H-1117 Budapest, Hungary.
[Chen, Shiyang] Baoshan Univ, Sch Engn & Technol, Baoshan 678000, Peoples R China.
[Shen, Jianmin] Max Planck Inst Math Sci, D-04103 Leipzig, Germany.
通讯机构:
[Liu, FY ] C
Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
Eotv Lorand Univ, Inst Phys, 1-A Pazmany P Setany, H-1117 Budapest, Hungary.
语种:
英文
关键词:
Machine learning;Domain adversarial neural network;3D Potts model;Phase transitions;Critical phenomena
期刊:
Physica A-Statistical Mechanics and its Applications
ISSN:
0378-4371
年:
2024
卷:
637
页码:
129533
基金类别:
CRediT authorship contribution statement Xiangna Chen: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Conceptualization. Feiyi Liu: Writing – review & editing, Supervision, Software, Methodology. Weibing Deng: Writing – review & editing, Supervision, acquisition, Conceptualization. Shiyang Chen: Writing – review & editing, Software. Jianmin Shen: Methodology, Conceptualization. Gábor Papp: Writing – review & editing, Validation, Software, acquisition. Wei Li: Writing – review
机构署名:
本校为第一且通讯机构
院系归属:
物理科学与技术学院
摘要:
Machine learning techniques exhibit significant performance in discriminating different phases of matter and provide a new avenue for studying phase transitions. We investigate the phase transitions of three dimensional q -state Potts model on cubic lattice by using a transfer learning approach, Domain Adversarial Neural Network (DANN). With the unique neural network architecture, it could evaluate the high -temperature (disordered) and low -temperature (ordered) phases, and identify the first and second order phase transitions. Meanwhile, by training the DANN with a few labeled configurations...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com