版权说明 操作指南
首页 > 成果 > 详情

Supervised and unsupervised learning of directed percolation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Shen, Jianmin;Li, Wei;Deng, Shengfeng;Zhang, Tao
作者机构:
[Shen, Jianmin; Li, Wei; Deng, Shengfeng; Zhang, Tao] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Shen, Jianmin; Li, Wei; Deng, Shengfeng; Zhang, Tao] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Li, Wei] Max Planck Inst Math Sci, D-04103 Leipzig, Germany.
语种:
英文
期刊:
Physical Review E
ISSN:
2470-0045
年:
2021
卷:
103
期:
5
页码:
052140
基金类别:
Fundamental Research Funds for the Central Universities, ChinaFundamental Research Funds for the Central Universities [CCNU19QN029]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11505071, 61702207, 61873104]; Programme of Introducing Talents of Discipline to Universities - State Administration of Foreign Experts Affairs under the 111 Project 2.0 [BP0820038]; Programme of Introducing Talents of Discipline to Universities - Ministry of Education, PRC under the 111 Project 2.0 [BP0820038]
机构署名:
本校为第一机构
院系归属:
物理科学与技术学院
摘要:
Machine learning (ML) has been well applied to studying equilibrium phase transition models by accurately predicating critical thresholds and some critical exponents. Difficulty will be raised, however, for integrating ML into nonequilibrium phase transitions. The extra dimension in a given nonequilibrium system, namely time, can greatly slow down the procedure toward the steady state. In this paper we find that by using some simple techniques of ML, non-steady-state configurations of directed percolation (DP) suffice to capture its essential critical behaviors in both ( 1+1 ) and ( 2+1 ) dime...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com