版权说明 操作指南
首页 > 成果 > 详情

Second-order texton feature extraction and pattern recognition of building polygon cluster using CNN network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Pengcheng;Shao, Ziqin;Xiao, Tianyuan
通讯作者:
Liu, PC
作者机构:
[Liu, Pengcheng; Shao, Ziqin] Cent China Normal Univ, Hubei Prov Key Lab Geog Proc Anal & Simulat, Wuhan, Hubei, Peoples R China.
[Liu, Pengcheng; Shao, Ziqin] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan, Hubei, Peoples R China.
[Xiao, Tianyuan] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China.
通讯机构:
[Liu, PC ] C
Cent China Normal Univ, Hubei Prov Key Lab Geog Proc Anal & Simulat, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Building polygon cluster pattern;Second-order texton co-occurrence matrix;Convolutional neural network;Map generalization;Gestalt principle
期刊:
International Journal of Applied Earth Observation and Geoinformation
ISSN:
1569-8432
年:
2024
卷:
129
页码:
103794
基金类别:
Fig. 5 (e) illustrates the first-order neighboring polygons (indicated by red lines) and second-order neighboring polygons (indicated by green lines) for building polygon A. As observed in Fig. 5 (d), within the Voronoi tessellation model, unlike regular images (of a single pixel are 8), the number of neighboring units for an individual building polygon may be greater or less than 8, and their directions are not restricted to fixed 8 directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°). Instead, they are distributed in the range θ ∈ [0°, 360°). Therefore, when constructing the texton co-occurrence matrix for a cluster of building polygons, it is necessary to partition the directions to determine the principal directions. This aspect will be elaborated upon in detail in Section 2.2.3.
机构署名:
本校为第一且通讯机构
院系归属:
城市与环境科学学院
摘要:
The cluster patterns of features in map space represent a comprehensive reflection of individual feature geometric attributes and their spatial adjacency relationships. These patterns also embody spatial cognition results under the Gestalt principle. Describing non-linear spatial cluster patterns as effective regular structures is one of the fundamental tasks in deep learning for recognizing feature cluster patterns. In this study, based on the concept of texture co-occurrence matrices from regular gray-scale images, we utilized Voronoi diagrams to construct the tessellation structure of build...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com