版权说明 操作指南
首页 > 成果 > 详情

A computational study on the Maximum-Weight Bounded-Degree Rooted Tree Problem

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Kerivin, Herve;Zhao, Jinhua*
通讯作者:
Zhao, Jinhua
作者机构:
[Kerivin, Herve] CNRS, LIMOS, UMR 6158, F-63178 Aubiere, France.
[Zhao, Jinhua] Cent China Normal Univ, Fac Artificial Intelligence Educ, Cent China Normal Univ Wollongong Joint Inst, Wuhan 430079, Peoples R China.
通讯机构:
[Zhao, Jinhua] C
Cent China Normal Univ, Fac Artificial Intelligence Educ, Cent China Normal Univ Wollongong Joint Inst, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Bounded-degree rooted tree;Branch-and-cut algorithm;Separation
期刊:
Applied Mathematics and Computation
ISSN:
0096-3003
年:
2022
卷:
413
页码:
126623
基金类别:
National Natural Science Foundation of China
机构署名:
本校为通讯机构
院系归属:
伍伦贡联合研究院
摘要:
This paper contributes to the computational study of the Maximum-Weight Bounded-Degree Rooted Tree Problem. Based on previous work, two types of formulations are introduced for the problem, along with some newly discovered constraints that can enhance the formulations. The separation problem for each family of constraints are studied in terms of their complexity and associated algorithms. We then compare the performance of four branch-and-cut frameworks in extensive computational simulations, especially the performance difference between origin...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com