版权说明 操作指南
首页 > 成果 > 详情

Research on optimization strategy of futures hedging dependent on market state

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yu, Xing;Li, Yanyan;Zhao, Qian
通讯作者:
Li, YY
作者机构:
[Zhao, Qian; Yu, Xing] Cent China Normal Univ, Sch Econ & Business Adm, Wuhan 430079, Peoples R China.
[Li, Yanyan; Li, YY] Renmin Univ China, Sch Finance, Beijing 100872, Peoples R China.
通讯机构:
[Li, YY ] R
Renmin Univ China, Sch Finance, Beijing 100872, Peoples R China.
语种:
英文
关键词:
State dependence;Model-driven;HMM;Machine learning;Futures hedging
期刊:
Applied Energy
ISSN:
0306-2619
年:
2024
卷:
373
页码:
123885
基金类别:
CRediT authorship contribution statement Xing Yu: Writing – original draft, Supervision, Methodology, acquisition. Yanyan Li: Writing – original draft, Software, Data curation. Qian Zhao: Writing – original draft.
机构署名:
本校为第一机构
院系归属:
经济与工商管理学院
摘要:
Considering the dynamic nature of market conditions, this paper introduces a state-dependent futures hedging optimization model and methodology. This approach dynamically adjusts the traditional model-driven hedging strategy, effectively balancing the pursuit of returns with the imperative of risk mitigation. Empirical evidence shows that integrating Hidden Markov Model (HMM) with machine learning techniques, as demonstrated in this study, improves the accuracy of market state forecasts. Compared to the traditional model-driven hedging strategy, the innovative state-dependent hedging strategy ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com