版权说明 操作指南
首页 > 成果 > 详情

AIGC Empowered Blended Learning in University Course Design and Implementation: A Case Study

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yang, JiuMei;Fan, ZhangQi;Chen, ShengQing;Wu, LongKai
通讯作者:
Wu, LK
作者机构:
[Yang, JiuMei; Wu, LongKai; Chen, ShengQing; Wu, LK] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
[Wu, LongKai; Fan, ZhangQi; Wu, LK] Cent China Normal Univ, Natl Engn Res Ctr Educ Big Data, Wuhan 430079, Peoples R China.
[Wu, LongKai; Wu, LK] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
通讯机构:
[Wu, LK ] C
Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Natl Engn Res Ctr Educ Big Data, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
AIGC;Blended learning;Deep learning ability;Teaching Practice
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2024
卷:
14797
页码:
188-200
会议名称:
17th International Conference on Blended Learning. Intelligent Computing in Education (ICBL)
会议论文集名称:
Lecture Notes in Computer Science
会议时间:
JUL 29-AUG 01, 2024
会议地点:
Macao SAR, PEOPLES R CHINA
会议主办单位:
[Yang, JiuMei;Chen, ShengQing;Wu, LongKai] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.^[Fan, ZhangQi;Wu, LongKai] Cent China Normal Univ, Natl Engn Res Ctr Educ Big Data, Wuhan 430079, Peoples R China.^[Wu, LongKai] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
主编:
Ma, WWK Li, C Fan, CW Lu, A U, LH
出版地:
152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
出版者:
SPRINGER-VERLAG SINGAPORE PTE LTD
ISBN:
978-981-97-4441-1; 978-981-97-4442-8
基金类别:
practice and research project of AI boosting teachers' teaching innovation in Central China Normal University [CCNUAIFE2022-03-21]
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Artificial Intelligence Generated Content (AIGC) is an important issue in the field of higher education. Although many studies on AIGC have appeared, they are mainly theoretical rather than empirical studies, and the study of how to effectively integrate AIGC into teaching is insufficient. Considering the compatibility between artificial intelligence and blended learning, based on constructivist learning theory and deep learning theory, and using AIGC, we designed a blended learning involving teacher, student, and AIGC, and three segments of pre-class, in-class, and post-class, and conducted t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com