版权说明 操作指南
首页 > 成果 > 详情

Recognition of Handwritten Chemical Organic Ring Structure Symbols Using Convolutional Neural Networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zheng, Lina;Zhang, Ting*;Yu, Xinguo(余新国
通讯作者:
Zhang, Ting
作者机构:
[Zheng, Lina] Cent China Normal Univ, Cent China Normal Univ Wollongong Joint Inst, Wuhan, Hubei, Peoples R China.
[Yu, Xinguo; Zhang, Ting] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
通讯机构:
[Zhang, Ting] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Handwritten symbol recognition;Chemical organic ring structure symbols;convolutional neural networks
期刊:
2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW), VOL 5
ISSN:
1520-5363
年:
2019
页码:
165-168
会议名称:
15th IAPR International Conference on Document Analysis and Recognition (ICDAR) / 2nd Workshop of Machine Learning (WML)
会议论文集名称:
Proceedings of the International Conference on Document Analysis and Recognition
会议时间:
SEP 21-22, 2019
会议地点:
Sydney, AUSTRALIA
会议主办单位:
[Zheng, Lina] Cent China Normal Univ, Cent China Normal Univ Wollongong Joint Inst, Wuhan, Hubei, Peoples R China.^[Zhang, Ting;Yu, Xinguo] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
会议赞助商:
IAPR
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-7281-5054-3
基金类别:
China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2019M652678]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [CCNU18XJ046]
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Many types of data exhibit characteristic of rotational symmetry. Chemical Organic Ring Structure(ORS) Symbol is such a case. In this paper, we focus on offline handwritten chemical ORS Symbols recognition using convolutional neural networks(CNNs), from application point of view, in order to relax the inconvenience and ineffectiveness of the traditional click-and-drag style of interaction when input chemical notations into electronic devices; from scientific point of view, to explore the capacity of rotation invariance of CNNs using data augmentation. We propose a VGGNet-based classifier for o...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com