版权说明 操作指南
首页 > 成果 > 详情

HyperED: A hierarchy-aware network based on hyperbolic geometry for event detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Meng;Xie, Zhiwen;Liu, Jin;Liu, Xiao;Yu, Xiao;...
通讯作者:
Liu, J
作者机构:
[Liu, Jin; Zhang, Meng] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China.
[Xie, Zhiwen] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China.
[Liu, Xiao] Deakin Univ, Sch Informat Technol, Geelong, Australia.
[Yu, Xiao] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan, Peoples R China.
[Huang, Bo] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai, Peoples R China.
通讯机构:
[Liu, J ] W
Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China.
语种:
英文
关键词:
event detection;hierarchical information;graph neural networks;hyperbolic geometry;Poincare ball
期刊:
Computational Intelligence
ISSN:
0824-7935
年:
2024
卷:
40
期:
1
页码:
-
基金类别:
National Natural Science Foundation of China#&#&#61972290
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
AbstractEvent detection plays an essential role in the task of event extraction. It aims at identifying event trigger words in a sentence and classifying event types. Generally, multiple event types are usually well‐organized with a hierarchical structure in real‐world scenarios, and hierarchical correlations between event types can be used to enhance event detection performance. However, such kind of hierarchical information has received insufficient attention which can lead to misclassification between multiple event types. In addition, the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com