版权说明 操作指南
首页 > 成果 > 详情

Syntax-Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Sun, Kaili;Li, Yuan;Zhang, Huyin;Guo, Chi;Yuan, Linfei;...
通讯作者:
Zhang, HY
作者机构:
[Zhang, Huyin; Sun, Kaili] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China.
[Li, Yuan; Yuan, Linfei] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
[Guo, Chi] Wuhan Univ, Artificial Intelligence Inst, Wuhan 430072, Peoples R China.
[Hu, Quan] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
通讯机构:
[Zhang, HY ] W
Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China.
语种:
英文
关键词:
Relation recognition;Syntactic interaction graph;Graph convolutional network;Chinese compound sentence
期刊:
JOURNAL OF SUPERCOMPUTING
ISSN:
0920-8542
年:
2022
卷:
78
期:
14
页码:
16529-16552
基金类别:
This work was supported in part by The National Key Research and Development Program of China under Grant no.2018YFC0809804 and the National Social Science Fund of China under Grant no.18BYY174.
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the syntactic interactive information in Chinese due to its complicated syntactic structure characteristics. In this paper, we propose a novel and effective model DSGCN-RoBERTa to learn the interaction features implied in sentences from both syntactic and semantic perspectives. To generate a rich contextual sentence embedding, we exploit RoBERTa, a large-scale pre-trained language model based on the transformer unit. DSGCN-RoBERTa consi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com