版权说明 操作指南
首页 > 成果 > 详情

Multiple Positive Solutions for a Nonlinear Elliptic Equation Involving Hardy—Sobolev—Maz'ya Term

认领
导出
Link by 中国知网学术期刊 Link by 维普学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Shuang Jie*;Yang, Jing
通讯作者:
Peng, Shuang Jie
作者机构:
[Yang, Jing; Peng, Shuang Jie] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Peng, Shuang Jie] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Hardy-Sobolev-Maz’ya inequality;Mountain Pass Lemma;positive solutions;subsolution and supersolution
关键词(中文):
多重正解;索伯列夫;非线性椭圆方程;期限;有界域
期刊:
数学学报:英文版
ISSN:
1439-8516
年:
2015
卷:
31
期:
6
页码:
893-912
基金类别:
Supported by NSFC (Grant No. 11301204), the PhD specialized grant of the Ministry of Education of China (Grant No. 20110144110001), and the excellent doctorial dissertation cultivation grant from Central China Normal University (Grant No. 2013YBZD15)
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz’ya term: $ - \Delta u - \lambda \frac{u} {{|y|^2 }} = \frac{{|u|^{p_t - 1} u}} {{|y|^t }} + \mu f(x),x \in \Omega ,$ where Ω is a bounded domain in ℝ N (N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ ℝ k × ℝ N-k and $p_t = \frac{{N + 2 - 2t}} {{N - 2}}(0 \leqslant t \leqslant 2)$ For f(x) ∈ C 1( $\bar \Omega $ ){0}, we show that there exists a constant μ* > 0 such that the problem ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com