In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy-Sobolev-Maz’ya term:
$ - \Delta u - \lambda \frac{u}
{{|y|^2 }} = \frac{{|u|^{p_t - 1} u}}
{{|y|^t }} + \mu f(x),x \in \Omega ,$
where Ω is a bounded domain in ℝ
N
(N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ ℝ
k
× ℝ
N-k
and
$p_t = \frac{{N + 2 - 2t}}
{{N - 2}}(0 \leqslant t \leqslant 2)$
For f(x) ∈ C
1(
$\bar \Omega $
){0}, we show that there exists a constant μ* > 0 such that the problem ...