版权说明 操作指南
首页 > 成果 > 详情

Achieving synchronization and chimera state of modular neural networks by using dynamic learning to adjust electromagnetic induction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Weifang;Wu, Yong;Ding, Qianming;Jia, Ya;Fu, Ziying;...
通讯作者:
Yang, LJ
作者机构:
[Wu, Yong; Huang, Weifang; Yang, LJ; Yang, Lijian; Jia, Ya; Ding, Qianming] Cent China Normal Univ, Dept Phys, Wuhan 430079, Peoples R China.
[Fu, Ziying] Cent China Normal Univ, Sch Life Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Yang, LJ ] C
Cent China Normal Univ, Dept Phys, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Synchronization;Chimera;Modular neural network;Electromagnetic induction;Dynamic learning
期刊:
Nonlinear Dynamics
ISSN:
0924-090X
年:
2024
页码:
1-23
基金类别:
National Natural Science Foundation of China [12175080]; Colleges' basic research and operation of MOE [CCNU22JC009]
机构署名:
本校为第一且通讯机构
院系归属:
物理科学与技术学院
生命科学学院
摘要:
Synchronous firing of neurons in neural networks is of great physiological significance. Based on improved Hodgkin-Huxley model with electromagnetic induction, a modular neural network consisting of two small-world networks unidirectionally coupled is studied. By utilizing dynamic learning of synchronization (DLS) technique, it is shown that both synchronization and chimera states of modular neural networks can be achieved by dynamic adjustment of electromagnetic induction strength. Therefore, the generation of synchronized states can be controlled. By adjusting the electromagnetic induction s...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com