版权说明 操作指南
首页 > 成果 > 详情

-Connectivity of Claw-Free Graphs

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Ziwen;Li, Xiangwen*;Ma, Jianqing
通讯作者:
Li, Xiangwen
作者机构:
[Huang, Ziwen; Ma, Jianqing; Li, Xiangwen] Cent China Normal Univ, Dept Math, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Xiangwen] C
Cent China Normal Univ, Dept Math, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Nowhere-zero k-flow;\(Z_3\)-connectivity;Claw-free graph;Neighborhood intersection
期刊:
Graphs and Combinatorics
ISSN:
0911-0119
年:
2017
卷:
33
期:
1
页码:
123-140
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11571134]; Doctoral Fund of Ministry of Education of ChinaMinistry of Education, China [20130144110001]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
Jaeger et al. conjectured that every 5-edge-connected graph is $$Z_3$$Z3-connected, which is equivalent to that every 5-edge-connected claw-free graph is $$Z_3$$Z3-connected by Lai et al. (Inf Process Lett 111:1085---1088, 2011), and Ma and Li (Discret Math 336:57---68, 2014). Let G be a claw-free graph on at least 3 vertices such that there are at least two common neighbors of every pair of 2-distant vertices. In this paper, we prove that G is not $$Z_3$$Z3-connected if and only if G is one of seven specified graphs, or three families of well characterized graphs. As a corollary, G does not a...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com