版权说明 操作指南
首页 > 成果 > 详情

High-Resolution Realistic Image Synthesis from Text Using Iterative Generative Adversarial Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Ullah, Anwar;Yu, Xinguo*;Majid, Abdul;Rahman, Hafiz Ur;Mughal, M. Farhan
通讯作者:
Yu, Xinguo
作者机构:
[Majid, Abdul; Ullah, Anwar; Yu, Xinguo] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China.
[Rahman, Hafiz Ur] Guangzhou Univ, Sch Comp Sci, Guangzhou 510006, Peoples R China.
[Mughal, M. Farhan] Tianjin Univ Finance & Econ, Tianjin, Peoples R China.
通讯机构:
[Yu, Xinguo] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China.
语种:
英文
关键词:
Pixels;Adversarial networks;CUB dataset;Human rank;Image synthesis;Inception score;Iterative GAN;Oxford-102 dataset;Iterative methods
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2019
卷:
11854
页码:
211-224
会议名称:
9th Pacific-Rim Symposium on Image and Video Technology, PSIVT 2019
会议论文集名称:
Image and Video Technology
会议时间:
18 November 2019 through 22 November 2019
会议地点:
Sydney, AUSTRALIA
会议主办单位:
[Ullah, Anwar;Yu, Xinguo;Majid, Abdul] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China.^[Rahman, Hafiz Ur] Guangzhou Univ, Sch Comp Sci, Guangzhou 510006, Peoples R China.^[Mughal, M. Farhan] Tianjin Univ Finance & Econ, Tianjin, Peoples R China.
主编:
Chilwoo Lee<&wdkj&>Zhixun Su<&wdkj&>Akihiro Sugimoto
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer
ISBN:
9783030348786
基金类别:
Keywords: Generative Adversarial Network (GAN) · Iterative GAN · Text-to-image synthesis · CUB dataset · Oxford-102 dataset · Inception score · Human rank This study is funded by the General Program of the National Natural Science Foundation of China (No: 61977029).
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Synthesizing high-resolution realistic images from text description using one iteration Generative Adversarial Network (GAN) is difficult without using any additional techniques because mostly the blurry artifacts and mode collapse problems are occurring. To reduce these problems, this paper proposes an Iterative Generative Adversarial Network (iGAN) which takes three iterations to synthesize high-resolution realistic image from their text description. In the \(1^{st}\) iteration, GAN synthesizes a low-resolution \(64 \times 64\) pixels basic shape and basic color image from the text descripti...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com