提出了一种基于深度学习技术的遥感分类方法,它能有效解决中分辨率影像在分类过程中出现的像元混分问题。研究选用2016年5月12日武汉市Landsat 7 ETM+遥感影像,基于GoogleNet模型中的Inceplion V3网络结构,借助迁移学习方法,构建出遥感分类模型,实现了对武汉市主城区4类典型地物(不透水层、植被、水体和其他用地)的自动分类提取,并将分类结果与传统最大似然分类(ML)结果进行了对比分析。研究表明:基于深度学习方法的遥感影像总体分类精度高达88.33%,Kappa系数为0.834 2,明显优于传统ML方法总体分类精度83%和Kappa系数0.755 0,而且有效抑制了地物在分类过程中出现的像元混分现象。