版权说明 操作指南
首页 > 成果 > 详情

Joint naïve bayes and LDA for unsupervised sentiment analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Zhang, Yong;Ji, Dong-Hong;Su, Ying;Wu, Hongmiao
作者机构:
[Zhang, Yong; Ji, Dong-Hong] Computer School, Wuhan University, Wuhan, China
[Wu, Hongmiao] School of Foreign Languages and Literature, Wuhan University, China
[Su, Ying] Department of Computer Science, Wuchang Branch, Huazhong University of Science and Technology, Wuhan, China
[Zhang, Yong] Department of Computer Science, Huazhong Normal University, Wuhan, China
语种:
英文
关键词:
Dependency parsing;Generative model;Latent Dirichlet allocation;Opinion mining;Sentence level;Sentiment analysis;Statistics;Data mining
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2013
卷:
7818 LNAI
期:
PART 1
页码:
402-413
会议名称:
17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2013
会议时间:
14 April 2013 through 17 April 2013
会议地点:
Gold Coast, QLD
ISBN:
9783642374524
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
In this paper we proposed a hierarchical generative model based on Nai¨ve Bayes and LDA for unsupervised sentiment analysis at sentence level and document level of granularity simultaneously. In particular, our model called NB-LDA assumes that each sentence instead of word has a latent sentiment label, and then the sentiment label generates a series of features for the sentence independently in the Nai¨ve Bayes manner. The idea of NB assumption at sentence level makes it possible that we can use advanced NLP technologies such as dependency parsing to improve the performance for unsuper...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com