版权说明 操作指南
首页 > 成果 > 详情

Bipancyclicism and bipanconnectivity in bipartite graphs

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Zhiquan;Zou, Yan*
通讯作者:
Zou, Yan
作者机构:
[Zou, Yan; Hu, Zhiquan] Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China.
通讯机构:
[Zou, Yan] C
Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China.
语种:
英文
关键词:
Edge prorating number;Path two bipancyclic;Bipanconnected;Bipartite graph
期刊:
Applied Mathematics and Computation
ISSN:
0096-3003
年:
2020
卷:
377
页码:
125149
基金类别:
We are very grateful to the reviewers for their invaluable suggestions and comments, which greatly help to improve the manuscript. This work is supported by NSFC grants 11771172, 11871239, 11971196 and 11671164. upported by NSFC grants 11771172, 11871239, 11971196 and 11671164.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
Given a bipartite graph G = (A(1), A(2), E) with m := min {vertical bar A(1)vertical bar, |vertical bar A(2)vertical bar} >= 2, the edge prorating number for x is an element of A(i) is defined as rho(G)(x) = (d(x) - 1)/vertical bar A(3-i)vertical bar, i = 1, 2. Set.(G) := min {rho(G)(x): x is an element of A(1) boolean OR A(2)} and call it the minimum edge prorating number of G. We call G path two bipancyclic if for every path P of length two in G, and for every integer k is an element of [2, m], G has a 2k-cycle passing through P. In this article, it is shown that the minimum edge prorating n...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com