版权说明 操作指南
首页 > 成果 > 详情

Query-aware multi-scale proposal network for weakly supervised temporal sentence grounding in videos

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhou, Mingyao;Chen, Wenjing;Sun, Hao;Xie, Wei;Dong, Ming;...
通讯作者:
Sun, H
作者机构:
[Zhou, Mingyao; Dong, Ming; Sun, Hao; Xie, Wei] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
[Zhou, Mingyao; Dong, Ming; Sun, Hao; Xie, Wei] Cent China Normal Univ, Sch Comp Sci, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
[Zhou, Mingyao; Dong, Ming; Sun, Hao; Xie, Wei] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
[Chen, Wenjing] Hubei Univ Technol, Sch Comp Sci, 28 Nanli Rd, Wuhan 430068, Hubei, Peoples R China.
[Lu, Xiaoqiang] Fuzhou Univ, Coll Phys & Informat Engn, 2 Wulong Jiangbei Ave, Fuzhou 350002, Fujian, Peoples R China.
通讯机构:
[Sun, H ] C
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Sch Comp Sci, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Temporal sentence grounding;Weakly supervised learning;Multi-modal interaction;Query-aware proposals
期刊:
Knowledge-Based Systems
ISSN:
0950-7051
年:
2024
卷:
304
基金类别:
National Natural Science Foundation of China [62201222, 62377026]; Knowledge Innovation Program of Wuhan-Shuguang Project [2023010201020382, 2023010201020377]; Fundamental Research Funds for the Central Universities [CCNU22QN014, CCNU24ai011, CCNU24JCPT027]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Recently, weakly supervised temporal sentence grounding in videos (TSGV) has attracted extensive attention because it does not require precise start-end time annotations during training, and it can quickly retrieve interesting segments according to user needs. In weakly supervised TSGV, query reconstruction (QR)-based methods are the current mainstream, and the quality of proposals determines their performance. QR-based methods have two problems in proposal quality. First, a multi-modal global token is usually mapped to proposals with limited duration diversity, making it difficult to capture ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com