版权说明 操作指南
首页 > 成果 > 详情

A three learning states Bayesian knowledge tracing model

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Kai*;Yao, Yiyu
通讯作者:
Zhang, Kai
作者机构:
[Zhang, Kai] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
[Yao, Yiyu; Zhang, Kai] Univ Regina, Dept Comp Sci, Regina, SK, Canada.
通讯机构:
[Zhang, Kai] U
Univ Regina, Dept Comp Sci, Regina, SK, Canada.
语种:
英文
关键词:
Bayesian knowledge tracing;Three-way decisions
期刊:
Knowledge-Based Systems
ISSN:
0950-7051
年:
2018
卷:
148
期:
May 15
页码:
189-201
基金类别:
This research was partially supported by the program of China Scholarship Council (CSC) under the Grant No. 201606775044 , and a Discovery Grant from NSERC, Canada. We used the Assistments Math 2004–2005 (912 Students), 2005–2006 (3136 Students), 2006–2007 (5046 Students) and dataset accessed via DataShop [ [9] ]. We would like to thank the anonymous reviewers for their constructive advice.
机构署名:
本校为第一机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
This paper proposes a Bayesian knowledge tracing model with three learning states by extending the original two learning states. We divide a learning process into three sections by using an evaluation function for three-way decisions. Advantages of such a trisection over traditional bisection are demonstrated by comparative experiments. We develop a three learning states model based on the trisection of the learning process. We apply the model to a series of comparative experiments with the original model. Qualitative and quantitative analyses of the experimental results indicate the superior ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com