版权说明 操作指南
首页 > 成果 > 详情

A relaxation of the strong Bordeaux Conjecture

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Ziwen;Li, Xiangwen;Yu, Gexin*
通讯作者:
Yu, Gexin
作者机构:
[Huang, Ziwen; Yu, Gexin; Li, Xiangwen] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Yu, Gexin] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA.
[Huang, Ziwen] Yichun Univ, Sch Math & Comp Sci, Yichun 336000, Peoples R China.
通讯机构:
[Yu, Gexin] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
planar graph;relaxed coloring;superextandable;strong bordeaux conjecture;05C10;05C15
期刊:
Journal of Graph Theory
ISSN:
0364-9024
年:
2018
卷:
88
期:
2
页码:
237-254
基金类别:
Gexin Yu, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China. Email: gyu@wm.edu Contract grant sponsor: Department of Education of Jiangxi Province; contract grant number: GJJ161030 (to Z.H.). Contract grant sponsor: Natural Science Foundation of China; contract grant number: 11571134 (to Z.H. and X.L.) . Contract grant sponsor: NSA; contract grant number: H98230-16-1-0316; contract grant sponsor: Science Foundation of China; contract grant number: 11728102 (to G.Y.).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
AbstractLet be k nonnegative integers. A graph G is ‐colorable if the vertex set can be partitioned into k sets , such that the subgraph , induced by , has maximum degree at most for . Let denote the family of plane graphs with neither adjacent 3‐cycles nor 5‐cycles. Borodin and Raspaud (2003) conjectured that each graph in is (0, 0, 0)‐colorable (which was disproved very recently). In this article, we prove that each graph in is (1, 1, 0)‐colorable, which improves the results by Xu (2009) and Liu‐Li‐Yu (2016).

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com