版权说明 操作指南
首页 > 成果 > 详情

Multi-network logistic matrix factorization for metabolite-disease interaction prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ma, Yingjun;He, Tingting(何婷婷);Jiang, Xingpeng*蒋兴鹏
通讯作者:
Jiang, Xingpeng(蒋兴鹏
作者机构:
[Jiang, Xingpeng; He, Tingting; Ma, Yingjun] Cent China Normal Univ, Sch Comp, 152 Luoyu Rd, Wuhan, Hubei, Peoples R China.
[Ma, Yingjun] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
[Jiang, Xingpeng; He, Tingting] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
通讯机构:
[Jiang, Xingpeng] C
Cent China Normal Univ, Sch Comp, 152 Luoyu Rd, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Disease similarity;Kernel neighborhood similarity;Metabolite similarity;Metabolite-disease interaction;logistic matrix factorization
期刊:
FEBS Letters
ISSN:
0014-5793
年:
2020
卷:
594
期:
11
页码:
1675-1684
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61872157, 61532008]; Fundamental Research Funds for Central UniversitiesFundamental Research Funds for the Central Universities [CCNU19ZN009]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
计算机学院
摘要:
Identifying disease-related metabolites is of great significance for the diagnosis, prevention, and treatment of disease. In this study, we propose a novel computational model of multiple-network logistic matrix factorization (MN-LMF) for predicting metabolite–disease interactions, which is especially relevant for new diseases and new metabolites. First, MN-LMF builds disease (or metabolite) similarity network by integrating heterogeneous omics data. Second, it combines these similarities with known metabolite–disease interaction networks, us...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com