版权说明 操作指南
首页 > 成果 > 详情

Weakly bipancyclic bipartite graphs

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Zhiquan*;Sun, Jing
通讯作者:
Hu, Zhiquan
作者机构:
[Hu, Zhiquan] Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China.
[Sun, Jing] Hubei Univ Educ, Fac Math & Stat, Wuhan, Peoples R China.
通讯机构:
[Hu, Zhiquan] C
Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China.
语种:
英文
关键词:
Bipartite graph;Hamiltonian cycle;Weakly bipancyclic;Minimum degree
期刊:
Discrete Applied Mathematics
ISSN:
0166-218X
年:
2015
卷:
194
页码:
102-120
基金类别:
The authors are very grateful to the referees for their many helpful suggestions and comments. The first author was supported by NSFC grants 11371162 and 11271149 .
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
We investigate the set of cycle lengths occurring in bipartite graphs with large minimum degree. A bipartite graph is weakly bipancyclic if it contains cycles of every even length between the length of a shortest and a longest cycle. In this paper, it is shown that if G = (V-1, V-2, E) is a bipartite graph with minimum degree at least n/3 + 4, where n = max {[V-1], [V-2]}, then G is a weakly bipancyclic graph of girth 4. This improves a theorem of Tian and Zang (1989), which asserts that if G is a Hamilton bipartite graph on 2n(n >= 60) vertices with minimum degree greater than 2n/5 + 2, then ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com