各种集成位置服务(LBS)的社交和旅游类APP的广泛应用,产生了大量轨迹空间数据,利用这些轨迹数据挖掘游客聚集密度高的热门景点区域,对景区的智慧服务和应急管理具有重要意义。为此,提出了一种基于轨迹停留点空间聚类的景区热点分析方法。重点研究了聚类速度快、能处理噪声、可以发现空间任意形状聚簇的DBSCAN算法,针对其参数需人工选择的不足,提出了一种根据数据统计分布特性来自适应确定参数的改进方法。分别采用人工合成二维数据集、四维Iris真实数据集和景区轨迹停留点三种不同的数据进行了DBSCAN聚类分析及对比实验,结果表明该方法可以自动产生合理的聚簇划分,优于传统DBSCAN和k-means等算法...