版权说明 操作指南
首页 > 成果 > 详情

Prediction of Drug-Disease Associations Based on Multi-Kernel Deep Learning Method in Heterogeneous Graph Embedding

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Dandan;Xiao, Zhen;Sun, Han;Jiang, Xingpeng;Zhao, Weizhong;...
通讯作者:
Shen, XJ
作者机构:
[Shen, Xianjun; Xiao, Zhen; Zhao, Weizhong; Shen, XJ; Jiang, Xingpeng; Sun, Han; Li, Dandan] Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
通讯机构:
[Shen, XJ ] C
Cent China Normal Univ, Sch Comp, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Drugs;Diseases;Proteins;Heterogeneous networks;Kernel;Semantics;Matrix decomposition;Drug repositioning;drug-disease association prediction;heterogeneous networks;graph attention model;multi-kernel deep learning
期刊:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN:
1545-5963
年:
2024
卷:
21
期:
1
页码:
120-128
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62372205 and 61932008) National Language Commission Key Research (Grant Number: ZDI145-56) Fundamental Research Funds for Central Universities (Grant Number: KJ02502022-0450) National High-end Foreign Expert Cooperation (Grant Number: G2022158003L) Natural Science Foundation of Hubei Province of China (Grant Number: 2022CFB289)
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Computational drug repositioning can identify potential associations between drugs and diseases. This technology has been shown to be effective in accelerating drug development and reducing experimental costs. Although there has been plenty of research for this task, existing methods are deficient in utilizing complex relationships among biological entities, which may not be conducive to subsequent simulation of drug treatment processes. In this article, we propose a heterogeneous graph embedding method called HMLKGAT to infer novel potential drugs for diseases. More specifically, we first con...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com