版权说明 操作指南
首页 > 成果 > 详情

Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Chunhua*;Yang, Jing
通讯作者:
Wang, Chunhua
作者机构:
[Wang, Chunhua; Yang, Jing] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Wang, Chunhua] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Double critical Hardy-Sobolev-Maz'ya terms;Infinitely many solutions;Variational methods
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
ISSN:
1078-0947
年:
2016
卷:
36
期:
3
页码:
1603-1628
基金类别:
NSFCNational Natural Science Foundation of China (NSFC) [11301204, 11371159]; CCNU from the colleges basic research and operation of MOEMinistry of Education, Singapore [CCNU14A05036]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
In this paper, we investigate the following elliptic problem involving double critical Hardy-Sobolev-Maz'ya terms: $$ \left\{\begin{array}{ll} -\Delta u = \mu\frac{|u|^{2^*(t)-2}u}{|y|^t} + \frac{|u|^{2^*(s)-2}u}{|y|^s} + a(x) u, & {\rm in}\ \Omega,\\ \quad u = 0, \,\, &{\rm on}\ \partial \Omega, \end{array} \right. $$ where $\mu\geq0$, $a(x)>0$, $2^*(t)=\frac{2(N-t)}{N-2}$, $2^*(s) = \frac{2(N-s)}{N-2}$, $0\leq t6+s$ when $\mu=0,$ and $\Omega$ satisfies some geometric conditions, then the above problem has infinitely many sign-changing solutions. The main tool is to estimate Morse indices of ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com