版权说明 操作指南
首页 > 成果 > 详情

The Sequential Fusion Estimation Algorithms Based on Gauss-Newton Method Over Multi-Agent Networked Systems

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Mou;Zhong, Liangji*;Tan, Liansheng(谭连生);Xiong, Naixue
通讯作者:
Zhong, Liangji
作者机构:
[Wu, Mou; Xiong, Naixue] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China.
[Wu, Mou; Zhong, Liangji] Hubei Univ Sci & Technol, Sch Comp Sci & Technol, Xianning 437100, Peoples R China.
[Tan, Liansheng] Univ Tasmania, Sch Technol Environm & Design, Discipline ICT, Hobart, Tas 7001, Australia.
[Tan, Liansheng] Cent China Normal Univ, Dept Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Zhong, Liangji] H
Hubei Univ Sci & Technol, Sch Comp Sci & Technol, Xianning 437100, Peoples R China.
语种:
英文
关键词:
cyclic routing;Gauss-Newton method;incremental learning;nonlinear least squares;sequential fusion
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2020
卷:
8
页码:
114315-114329
基金类别:
This work was supported in part by the Local Science and Technology Development Fund guided by the Central Government under Grant 2019ZYYD009, in part by the Natural Science Foundation of Hubei Province under Grant 2019CFC881 and Grant 2019CFC888, and in part by the Research Development Fund of the Hubei University of Science and Technology under Grant 2019-21GP06.
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
In multi-agent networked systems, parameter estimation problems arising in many practical applications are often required to solve Non-Linear Least Squares (NLLS) problems with the usual objective function (i.e., sum of squared residuals). The aim is to estimate a global parameter of interest across the network, such that the discrepancy between the estimation model and the real output of the system is minimized. There are challenges to face when applying the conventional Gauss-Newton method, such as non-cooperation and prosaic learning behavior. In this paper, we propose two Gauss-Newton type...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com