We study the existence, concentration and multiplicity of weak solutions to the
quasilinear Schrödinger equation with critical Sobolev growth
\begin{equation*}
\left\{ \begin{gathered}
- {\varepsilon ^2}\Delta u + V(x)u - {\varepsilon ^2}\Delta (u^2)u = W(x){u^{q - 1}} + {u^{2\cdot{2^*} - 1}} {\text{ in }}{\mathbb{R}^N},\\
u > 0{\text{ in }}{\mathbb{R}^N},\\
\end{gathered} \right.
\end{equation*}
where $\varepsilon $ is a small positive parameter, $N \ge 3$, ${2^ * } = \frac{{2N}}
{{N - 2}}$, $4 < q < 2 \cdot {2^ * }$, $\min V > 0$ a...