版权说明 操作指南
首页 > 成果 > 详情

Exploiting proximity feature in statistical translation models for information retrieval

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Xinhui Tu;Jing Luo;Bo Li;Tingting He;Maofu Liu
作者机构:
[Jing Luo; Xinhui Tu; Maofu Liu] College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
[Bo Li; Tingting He] Department of Computer Science, Central China Normal University, Wuhan, China
[Jing Luo; Xinhui Tu; Maofu Liu] Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China
语种:
英文
关键词:
Document-based;Proximity information;State-of-art methods;Statistical translation model;Translation language models;Translation models;TREC collection;Word co-occurrence;Computational linguistics;Information retrieval;Knowledge management;Probability;Estimation
期刊:
International Conference on Information and Knowledge Management, Proceedings
年:
2013
页码:
1237-1240
会议名称:
The 33rd ACM International Conference on Information and Knowledge Management
会议论文集名称:
CIKM '13: Proceedings of the 22nd ACM international conference on Information & Knowledge Management
会议时间:
October 21 - 25, 2024
会议地点:
Boise , ID , USA
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9781450322638
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
A main challenge in applying translation language models to information retrieval is how to estimate the "true" probability that a query could be generated as a translation of a document. The state-of-art methods rely on document-based word co-occurrences to estimate word-word translation probabilities. However, these methods do not take into account the proximity of co-occurrences. Intuitively, the proximity of co-occurrences can be exploited to estimate more accurate translation probabilities, since two words occur closer are more likely to be related. In this paper, we study how to explicit...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com