版权说明 操作指南
首页 > 成果 > 详情

Broad Learning System with Locality Sensitive Discriminant Analysis for Hyperspectral Image Classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yao, Huang;Zhang, Yu;Wei, Yantao*;Tian, Yuan
通讯作者:
Wei, Yantao
作者机构:
[Yao, Huang; Wei, Yantao; Tian, Yuan; Zhang, Yu] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
[Wei, Yantao] Cent China Normal Univ, Educ Informatizat Res Ctr Hubei, Wuhan 430079, Peoples R China.
通讯机构:
[Wei, Yantao] C
Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Educ Informatizat Res Ctr Hubei, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Discriminant analysis;Image analysis;Image classification;Multilayer neural networks;Network layers;Spectroscopy;Classification accuracy;Computing demands;High dimensionality;Locality sensitive discriminant analysis;Manifold learning;Output layer;Stacking layers;State of the art;Learning systems
期刊:
Mathematical Problems in Engineering
ISSN:
1024-123X
年:
2020
卷:
2020
页码:
1-16
基金类别:
Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [CCNU20ZN002, CCNU20TD005]
机构署名:
本校为第一且通讯机构
院系归属:
教育信息技术学院
摘要:
In this paper, we propose a new method for hyperspectral images (HSI) classification, aiming to take advantage of both manifold learning-based feature extraction and neural networks by stacking layers applying locality sensitive discriminant analysis (LSDA) to broad learning system (BLS). BLS has been proven to be a successful model for various machine learning tasks due to its high feature representative capacity introduced by numerous randomly mapped features. However, it also produces redundancy, which is indiscriminate and finally lowers it...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com