版权说明 操作指南
首页 > 成果 > 详情

Spatial-Temporal Multi-Head Attention Networks for Traffic Flow Forecasting

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Zhao Zhang;Ming Liu;Wenquan Xu
通讯作者:
Zhang, Zhao(925762735@qq.com)
作者机构:
[Zhao Zhang; Ming Liu; Wenquan Xu] School of Computer, University of Central China Normal University, China
语种:
英文
关键词:
Flow graphs;Graph neural networks;Recurrent neural networks;Street traffic control;Control management;Deep learning;Graph attention network;Intelligent traffic systems;Intelligent traffics;Multi-head attention;Spatial temporals;Temporal dependence;Traffic flow forecasting;Traffic management;Forecasting
期刊:
ACM International Conference Proceeding Series
年:
2021
页码:
1–7
会议论文集名称:
CSAE '21: Proceedings of the 5th International Conference on Computer Science and Application Engineering
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9781450389853
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
Traffic flow forecasting plays an important role in the intelligent traffic system, which is the basis for traffic control and traffic management. However, due to the complex spatial-temporal dependence, traffic flow forecasting has always been a difficulty in the field of intelligent traffic. In order to select a suitable spatialtemporal forecasting method and solve the problem that recurrent neural architecture is not conducive to parallel computing, we construct a spatial-temporal forecasting model by using multi-head attention models. Use g...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com