版权说明 操作指南
首页 > 成果 > 详情

MRATNet: Learning Discriminative Features for Partial Discharge Pattern Recognition via Transformers

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Yi;Zhu, Kuihu;Liu, Jiazheng;Liu, Hai
通讯作者:
Zhu, KH
作者机构:
[Liu, Jiazheng; Deng, Yi; Zhu, Kuihu] Wuhan Text Univ, Sch Elect & Elect Engn, Wuhan 430200, Peoples R China.
[Deng, Yi] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China.
[Liu, Hai] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
通讯机构:
[Zhu, KH ] W
Wuhan Text Univ, Sch Elect & Elect Engn, Wuhan 430200, Peoples R China.
语种:
英文
关键词:
Feature extraction;Partial discharges;Transformers;Discharges (electric);Power transformer insulation;Computer architecture;Task analysis;high-voltage cables (HVCs);partial discharge (PD);pattern recognition;transformer
期刊:
IEEE Transactions on Dielectrics and Electrical Insulation
ISSN:
1070-9878
年:
2024
卷:
31
期:
4
页码:
2198-2207
基金类别:
Program for Excellent Middle-Aged and Young Scientist Science and Technology Innovative Research Team in the Higher Education Institutions of Hubei (Grant Number: T201930)
机构署名:
本校为其他机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Partial discharge pattern recognition (PDPR) is the fundamental cornerstone for fault diagnosis. It has emerged as a pivotal focal point in the field of power systems. However, PDPR faces several challenges, such as low signal quality and complex discharge patterns. We propose a multiscale residual aggregation transformer network (MRATNet) to address these challenges effectively. MRATNet learns long-dependent semantic relationships and discriminative features in partial discharge (PD) signals. Moreover, it integrates convolutional and transformer architectures as the feature extraction backbon...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com