版权说明 操作指南
首页 > 成果 > 详情

Social contagion in high-order network with mutation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Tianyu;Wu, Yong;Ding, Qianming;Xie, Ying;Yu, Dong;...
通讯作者:
Jia, Y
作者机构:
[Wu, Yong; Xie, Ying; Yang, Lijian; Jia, Ya; Li, Tianyu; Ding, Qianming; Yu, Dong] Cent China Normal Univ, Inst Biophys, Dept Phys, Wuhan 430079, Peoples R China.
通讯机构:
[Jia, Y ] C
Cent China Normal Univ, Inst Biophys, Dept Phys, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Simplicial contagion model;Mean-field theory;Bistablity;Epidemic mutation
期刊:
CHAOS SOLITONS & FRACTALS
ISSN:
0960-0779
年:
2024
卷:
180
页码:
114583
基金类别:
To bolster the reliability of conclusions derived from the artificial random network, we introduced two real networks. Table 1 presents the number of nodes, degree of 1-simplices, 2-simplices. Real networks exhibit strong heterogeneity, making the approximation with mean-field theory unsuitable. Instead, we employ the microscopic Markov-chain approach (MMCA) for approximation [24]. For any node i in the network, the probability of the node being infected by epidemic A or B at time t can be
机构署名:
本校为第一且通讯机构
院系归属:
物理科学与技术学院
摘要:
The simplicial contagion model is employed to study the spreads of two epidemics with mutation in high-order networks. The original epidemic can give birth to a mutated epidemic, but not vice versa. Numerical simulations and mean-field theory results reveal that the spread of the mutated epidemic is entirely dependent on the original epidemic if it cannot spread independently. Conversely, the spread of the original epidemic is entirely inhibited when mutated epidemic spreads by itself. The stability analysis of mean-field theory explains the extinction of the original epidemic and the emergenc...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com