版权说明 操作指南
首页 > 成果 > 详情

Topic enhanced deep structured semantic models for knowledge base question answering

认领
导出
Link by 中国知网学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xie, Zhiwen;Zeng, Zhao;Zhou, Guangyou*;Wang, Weijun
通讯作者:
Zhou, Guangyou
作者机构:
[Zeng, Zhao; Zhou, Guangyou; Xie, Zhiwen] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
[Wang, Weijun; Zhou, Guangyou] Cent China Normal Univ, Minist Educ, Key Lab Adolescent Cyberpsychol & Behav, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Zhou, Guangyou] C
Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Minist Educ, Key Lab Adolescent Cyberpsychol & Behav, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
question answering;deep learning;knowledge base;semantic matching;topic entity
期刊:
中国科学:信息科学(英文版)
ISSN:
1674-733X
年:
2017
卷:
60
期:
11
页码:
110103-1-110103-15
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61573163, 71571084]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [CCNU16A02024]; Wuhan Youth Science and Technology Plan
机构署名:
本校为第一且通讯机构
院系归属:
心理学院
计算机学院
摘要:
Knowledge Base Question Answering (KBQA) is a hot research topic in natural language processing (NLP). The most challenging problem in KBQA is how to understand the semantic information of natural language questions and how to bridge the semantic gap between the natural language questions and the structured fact triples in knowledge base. This paper focuses on simple questions which can be answered by a single fact triple in knowledge base. We propose a topic enhanced deep structured semantic model for KBQA. The proposed method considers the task of KBQA as a matching problem between questions...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com