在采取远程监督方法构建大规模的关系抽取语料库时,一般会不可避免地引入大量冗余和噪声,从而影响关系抽取的效果。为此,文章提出基于双向长短期记忆网络(LSTM)和结构化自注意力机制的方法来缓解训练数据的噪声问题。结合中文语言的特点,在输入层采用结合义原训练的词向量作为输入,通过双向LSTM来抽取句子的语义特征,利用结构化的自注意力机制来学习面对实体对的上下文表示,通过多实例选择的方法来选择有效的实例,从而尽量避免噪声数据的影响。实验结果表明,文章提出的模型能有效提高实体关系抽取的准确率与召回率,其F1值比加上了注意力机制的CNN与双向LSTM分别提升了4.3%和1.2%。