要:针对目前大多数脑电波情感识别方法存在的依赖手动特征提取等问题,提出一种基于卷积神经网络(convolutional neural network, CNN)和双向长短时记忆(bidirectional long short-term memory, Bi-LSTM)网络的混合模型。首先将一维数据转换为二维数据,采用CNN提取空间特征;然后将一维数据输入Bi-LSTM,获取时间特征;最后将融合的空间和时间特征输入Softmax分类器,得到最终分类结果。在DEAP数据集上的实验结果表明:CNN和Bi-LSTM混合模型具有较好的分类性能,在效价度和唤醒度上的准确率分别达到88.55%和89.07%,是一种可行的脑电波情感分类模型。