版权说明 操作指南
首页 > 成果 > 详情

A Novel Drug Repositioning Model Based on Heterogeneous Graph Convolutional Network via Multi-task Learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Shengwei Ye;Weizhong Zhao;Xianjun Shen;Xingpeng Jiang;Tingting He
作者机构:
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, PR China
School of Computer, Central China Normal University, Wuhan, Hubei, PR China
National Language Resources Monitoring & Research Center for Network Media Central China Normal University, Wuhan, Hubei, PR China
[Shengwei Ye; Weizhong Zhao; Xianjun Shen; Xingpeng Jiang; Tingting He] Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, PR China<&wdkj&>School of Computer, Central China Normal University, Wuhan, Hubei, PR China<&wdkj&>National Language Resources Monitoring & Research Center for Network Media Central China Normal University, Wuhan, Hubei, PR China
语种:
英文
关键词:
drug repositioning;drug-disease associations prediction;multi-task learning;graph convolutional network;heterogeneous information network
年:
2022
页码:
633-638
会议名称:
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
会议论文集名称:
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
会议时间:
06 December 2022
会议地点:
Las Vegas, NV, USA
出版者:
IEEE
ISBN:
978-1-6654-6820-6
基金类别:
10.13039/501100001809-National Natural Science Foundation of China 10.13039/100006190-Research and Development
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
Compared with traditional methods, drug repositioning is a viable solution to drug discovery. Drug repositioning usually applies the procedure of drug-disease associations (DDAs) prediction, which can reduce the cost and time of drug development and improve the success rate of drug discovery. In this paper, we develop a new multi-task learning framework based on heterogeneous graph convolutional network (MTHGCN) to recognize potential DDAs. In MTHGCN, a heterogeneous information network is constructed by combining multiple biological datasets. And then, a module based on graph convolutional ne...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com