版权说明 操作指南
首页 > 成果 > 详情

Minimality of p-adic rational maps with good reduction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fan, Aihua;Fan, Shilei*;Liao, Lingmin;Wang, Yuefei
通讯作者:
Fan, Shilei
作者机构:
[Fan, Aihua; Fan, Shilei] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Fan, Aihua] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 7352, 33 Rue St Leu, F-80039 Amiens 1, France.
[Fan, Shilei] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
[Liao, Lingmin] Univ Paris Est Creteil, LAMA, UMR 8050, CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France.
[Wang, Yuefei] Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China.
通讯机构:
[Fan, Shilei] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
$p$-adic dynamical system;minimal decomposition;projective line;good reduction;rational map
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
ISSN:
1078-0947
年:
2017
卷:
37
期:
6
页码:
3161-3182
基金类别:
A. H. FAN was supported by NSF of China (Grant No. 11471132); S. L. FAN was supported by NSF of China (Grant No. 11401236) and self-determined research funds of CCNU (Grant No. CCNU17QN0009); Y. F. WANG was supported by NSF of China (Grant No. 11231009)
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
A rational map with good reduction in the field ℚp of p-adic numbers defines a 1-Lipschitz dynamical system on the projective line ℙ1(ℚp) over ℚp. The dynamical structure of such a system is completely described by a minimal decomposition. That is to say, ℙ1 (ℚp) is decomposed into three parts: Finitely many periodic orbits; finite or countably many minimal subsystems each consisting of a finite union of balls; and the attracting basins of periodic orbits and minimal subsystems. For any prime p, a criterion of minimality for rational maps...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com