版权说明 操作指南
首页 > 成果 > 详情

Human Activity Recognition Based on Self-Attention Mechanism in WiFi Environment

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ge, Fei*;Yang, Zhimin;Dai, Zhenyang;Tan, Liansheng;Hu, Jianyuan;...
通讯作者:
Ge, Fei;Yang, ZM
作者机构:
[Dai, Zhenyang; Yang, Zhimin; Ge, Fei; Qiu, Han; Tan, Liansheng; Li, Jiayuan; Hu, Jianyuan] Cent China Normal Univ, Sch Comp Sci, Wuhan 430070, Peoples R China.
[Tan, Liansheng] Univ Tasmania, Sch Technol Environm & Design, Hobart, Tas 7001, Australia.
通讯机构:
[Yang, ZM ; Ge, F] C
Cent China Normal Univ, Sch Comp Sci, Wuhan 430070, Peoples R China.
语种:
英文
关键词:
Attention;channel state information (CSI);convolutional neural networks;human activity recognition
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2024
卷:
12
页码:
85231-85243
基金类别:
National Natural Science Foundation of China
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
In recent years, the use of WiFi Channel State Information (CSI) for Human Activity Recognition (HAR) has attracted widespread attention, thanks to its low cost and non-intrusive advantages. Previous research mostly used models based on Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) for activity recognition. However, these methods fail to achieve good parallelism while learning global features and fine-grained features, so they often cannot achieve the ideal recognition effect or training speed. In light of this, we propose an ensemble deep learning model based on CNN a...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com