版权说明 操作指南
首页 > 成果 > 详情

Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhu, Qiang;Jiang, Xingpeng*蒋兴鹏);Zhu, Qing;Pan, Min;He, Tingting(何婷婷
通讯作者:
Jiang, Xingpeng
作者机构:
[Zhu, Qiang] Cent China Normal Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.
[Jiang, Xingpeng; He, Tingting; Pan, Min; Zhu, Qiang; Zhu, Qing] Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
[Jiang, Xingpeng; He, Tingting; Pan, Min; Zhu, Qing] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Hubei, Peoples R China.
通讯机构:
[Jiang, Xingpeng] C
Cent China Normal Univ, Sch Comp, Wuhan, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Graph embedding;deep learning;Feature Selection;biomarkers;microbiome
期刊:
Frontiers in Genetics
ISSN:
1664-8021
年:
2019
卷:
10
页码:
491009
基金类别:
This research is supported by the National Key Research and Development Program of China (2017YFC0909502) and the National Natural Science Foundation of China (No. 61532008 and 61872157).
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
信息管理学院
摘要:
The microbiome-wide association studies are to figure out the relationship between microorganisms and humans, with the goal of discovering relevant biomarkers to guide disease diagnosis. However, the microbiome data is complex, with high noise and dimensions. Traditional machine learning methods are limited by the models' representation ability and cannot learn complex patterns from the data. Recently, deep learning has been widely applied to fields ranging from text processing to image recognition due to its efficient flexibility and high capacity. But the deep learning models must be trained...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com