版权说明 操作指南
首页 > 成果 > 详情

On the fractional Lazer-McKenna conjecture with critical growth

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Qi;Peng, Shuangjie
作者机构:
College of Science, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People's Republic of China (qili@mails.ccnu.edu.cn)
[Peng, Shuangjie] School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, People's Republic of China (sjpeng@mail.ccnu.edu.cn)
[Li, Qi] College of Science, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China<&wdkj&>School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People's Republic of China (qili@mails.ccnu.edu.cn)
语种:
英文
关键词:
fractional Laplace;first eigenfunction;Lyapunov-Schmidt reduction
期刊:
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
ISSN:
0308-2105
年:
2022
卷:
152
期:
4
页码:
879-911
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
This paper deals with the following fractional elliptic equation with critical exponent \[ \begin{cases} \displaystyle (-\Delta )^{s}u=u_{+}^{2_{s}^{*}-1}+\lambda u-\bar{\nu}\varphi_{1}, &amp; \text{in}\ \Omega,\\ \displaystyle u=0, &amp; \text{in}\ {{\mathfrak R}}^{N}\backslash \Omega, \end{cases}\] where $\lambda$, $\bar {\nu }\in {{\mathfrak R}}$, $s\in (0,1)$, $2^{*}_{s}=({2N}/{N-2s})\,(N&gt;2s)$, $(-\Delta )^{s}$ is the fractional Laplace operator, $\Omega \subset {{\mathfrak R}}^{N}$ is a bounded domain with smooth boundary and $\varphi _{1}$ is the first positive eigenfunction of the fr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com