版权说明 操作指南
首页 > 成果 > 详情

Automated Video Generation of Moving Digits from Text Using Deep Deconvolutional Generative Adversarial Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ullah, Anwar;Yu, Xinguo;Numan, Muhammad
通讯作者:
Yu, XG
作者机构:
[Ullah, Anwar; Yu, Xinguo; Yu, XG] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
[Numan, Muhammad] Cent China Normal Univ, Wollongong Joint Inst, Wuhan 430079, Peoples R China.
通讯机构:
[Yu, XG ] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Generative Adversarial Network (GAN);deconvolutional neural network;convolutional neural network;Inception Score (IS);temporal coherence;Frechet Inception Distance (FID);Generative Adversarial Metric (GAM)
期刊:
计算机、材料和连续体(英文)
ISSN:
1546-2218
年:
2023
卷:
77
期:
2
页码:
2359-2383
基金类别:
General Program of the National Natural Science Foundation of China [61977029]
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved, including digit deformation, noise interference between frames, blurred output, and the need for temporal coherence across frames. In this paper, we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network (DD-GAN). The DD-GAN comprises a Deep Deconvolutional Neural Network (DDNN) as a Generator (G) and a modified Deep Convolutional Neural Network (DCNN) as a Discriminator (D) to e...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com