版权说明 操作指南
首页 > 成果 > 详情

Integral and distance integral Cayley graphs over generalized dihedral groups

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Jing;Li, Shuchao*
通讯作者:
Li, Shuchao
作者机构:
[Huang, Jing] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China.
[Li, Shuchao] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Shuchao] C
Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Integral Cayley graph;Generalized dihedral group;Character;Irreducible representation
期刊:
Journal of Algebraic Combinatorics
ISSN:
0925-9899
年:
2021
卷:
53
期:
4
页码:
921-943
基金类别:
Jing Huang acknowledges the financial support by the China Postdoctoral Science Foundation (Grant No. 2019M662883). Shuchao Li acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149)
机构署名:
本校为通讯机构
院系归属:
数学与统计学学院
摘要:
A graph is said to be integral (resp. distance integral) if all the eigenvalues of its adjacency matrix (resp. distance matrix) are integers. Let H be a finite abelian group, and let $${\mathscr {H}}=\langle H,b\,|\,b^2=1,bhb=h^{-1},h\in H\rangle $$ be the generalized dihedral group of H. The contribution of this paper is threefold. Firstly, based on the representation theory of finite groups, we obtain a necessary and sufficient condition for a Cayley graph over $${\mathscr {H}}$$ to be integral, which naturally contains ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com