版权说明 操作指南
首页 > 成果 > 详情

Heterogeneous Network Embedding: A Survey

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Sufen;Peng, Rong;Hu, Po;Tan, Liansheng
通讯作者:
Peng, Rong(rongpeng@whu.edu.cn)
作者机构:
[Peng, Rong; Zhao, Sufen] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China.
[Hu, Po; Tan, Liansheng; Zhao, Sufen] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Peng, R.] S
School of Computer Science, China
语种:
英文
关键词:
graph neural networks;Heterogeneous information networks;heterogeneous network embedding;machine learning;representation learning
期刊:
工程与科学中的计算机建模(英文)
ISSN:
1526-1492
年:
2023
卷:
137
期:
1
页码:
83-130
基金类别:
Funding Statement: Our research work is supported by the National Key Research and Development Plan of China (2017YFB0503700, 2016YFB0501801); the National Natural Science Foundation of China (61170026, 62173157); the Thirteen Five-Year Research Planning Project of National Language Committee (No. YB135-149); the Fundamental Research Funds for the Central Universities (Nos. CCNU20QN022, CCNU20QN021, CCNU20ZT012).
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Real-world complex networks are inherently heterogeneous; they have different types of nodes, attributes, and relationships. In recent years, various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks (HINs) into low-dimensional embeddings; this task is called heterogeneous network embedding (HNE). Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification, recommender systems, and information retri...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com