版权说明 操作指南
首页 > 成果 > 详情

An adaptive term proximity based rocchio's model for clinical decision support retrieval.

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Pan, Min;Zhang, Yue;Zhu, Qiang;Sun, Bo;He, Tingting*何婷婷);...
通讯作者:
He, Tingting(何婷婷
作者机构:
[Sun, Bo; Pan, Min] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Hubei, Peoples R China.
[Pan, Min] Hubei Normal Univ, Sch Comp & Informat Engn, Huangshi 435002, Hubei, Peoples R China.
[Jiang, Xingpeng; He, Tingting; Zhang, Yue; Zhu, Qiang] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[He, Tingting] C
Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Clinical retrieval;Term proximity;Query expansion;Pseudo relevance feedback
期刊:
BMC Medical Informatics and Decision Making
ISSN:
1472-6947
年:
2019
卷:
19
期:
9
页码:
251
会议名称:
International Conference on Intelligent Computing (ICIC) / Intelligent Computing and Biomedical Informatics (ICBI) Conference - Medical Informatics and Decision Making
会议时间:
AUG 15-18, 2018
会议地点:
PEOPLES R CHINA
会议主办单位:
[Pan, Min;Sun, Bo] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Hubei, Peoples R China.^[Pan, Min] Hubei Normal Univ, Sch Comp & Informat Engn, Huangshi 435002, Hubei, Peoples R China.^[Zhang, Yue;Zhu, Qiang;He, Tingting;Jiang, Xingpeng] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
出版地:
CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
出版者:
BMC
基金类别:
This research is supported by the Fundamental Research Funds for Central Universities (CCNU18JCK05), the National Natural Science Foundation of China (61532008), the National Science Foundation of China (61572223), and National Key Research and Development Program of China (2017YFC0909502). Publication costs have been funded by the National Key Research and Development Program of China (2017YFC0909502). We are very grateful to the anonymous reviewers and deputy editors for their valuable and excellent comments, which have greatly improved the quality of this paper.
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
国家数字化学习工程技术研究中心
摘要:
BACKGROUND: In order to better help doctors make decision in the clinical setting, research is necessary to connect electronic health record (EHR) with the biomedical literature. Pseudo Relevance Feedback (PRF) is a kind of classical query modification technique that has shown to be effective in many retrieval models and thus suitable for handling terse language and clinical jargons in EHR. Previous work has introduced a set of constraints (axioms) of traditional PRF model. However, in the feedback document, the importance degree of candidate term and the co-occurrence relationship between a c...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com