版权说明 操作指南
首页 > 成果 > 详情

Hamiltonicity of edge chromatic critical graphs

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Guantao;Chen, Xiaodong*;Zhao, Yue
通讯作者:
Chen, Xiaodong
作者机构:
[Chen, Guantao] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA.
[Chen, Guantao] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Chen, Xiaodong] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China.
[Zhao, Yue] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA.
通讯机构:
[Chen, Xiaodong] L
Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China.
语种:
英文
关键词:
Edge coloring;Critical graphs;Hamiltonian cycles
期刊:
Discrete Mathematics
ISSN:
0012-365X
年:
2017
卷:
340
期:
12
页码:
3011-3015
基金类别:
This research is supported by National Natural Science Foundation of China (Grant No. 61572095 , No. 51405214 ); National Natural Science Foundation of China Tian Yuan Special Foundation (Grant No. 11426125 ); The Joint Fund of Liaoning Province Natural Science Foundation (Grant No. SY2016012 ).
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
Vizing conjectured that every edge chromatic critical graph contains a 2-factor. Believing that stronger properties hold for this class of graphs, Luo and Zhao (2013) showed that every edge chromatic critical graph of order n with maximum degree at least [Formula presented] is Hamiltonian. Furthermore, Luo et al. (2016) proved that every edge chromatic critical graph of order n with maximum degree at least [Formula presented] is Hamiltonian. In this paper, we prove that every edge chromatic critical graph of order n with maximum degree at least...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com