版权说明 操作指南
首页 > 成果 > 详情

Phase transition layers for Fife-Greenlee problem on smooth bounded domain

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Feifei;Wei, Suting;Yang, Jun*
通讯作者:
Yang, Jun
作者机构:
[Tang, Feifei; Yang, Jun; Wei, Suting] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Yang, Jun] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Yang, Jun] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Boundary connectivity;Fermi coordinates;Fife-Greenlee problem;Phase transition;Resonance
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
ISSN:
1078-0947
年:
2018
卷:
38
期:
3
页码:
1527-1552
基金类别:
NSFCNational Natural Science Foundation of China (NSFC) [11371254, 11671144]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
We consider the Fife-Greenlee problem $ε^2\triangle u + \bigl(u-\mathbf{a}(y)\bigr)(1-u^2) =0 ~~~ \mbox{in}\ Ω,~~~~~~~\frac{\partial u}{\partialν} = 0 ~~~ \mbox{on}\ \partialΩ,$ where $Ω$ is a bounded domain in ${\mathbb R}^2$ with smooth boundary, $\epsilon>0$ is a small parameter, $ν$ denotes the unit outward normal of $\partialΩ$. Let $Γ = \{y∈ Ω: \mathbf{a}(y) = 0 \}$ be a simple smooth curve intersecting orthogonally with $\partialΩ$ at exactly two points and dividing $Ω$ into two disjoint nonempty components. We assume that $-...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com