版权说明 操作指南
首页 > 成果 > 详情

Transfer learning of phase transitions in percolation and directed percolation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Shen, Jianmin;Liu, Feiyi;Chen, Shiyang;Xu, Dian;Chen, Xiangna;...
作者机构:
[Yang, Chunbin; Liu, Feiyi; Chen, Shiyang; Shen, Jianmin; Li, Wei; Chen, Xiangna; Xu, Dian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Yang, Chunbin; Liu, Feiyi; Chen, Shiyang; Shen, Jianmin; Li, Wei; Chen, Xiangna; Xu, Dian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Liu, Feiyi; Papp, Gabor] Eotvos Lorand Univ, Inst Phys, 1-A Pazmany P Setany, H-1117 Budapest, Hungary.
[Deng, Shengfeng] Ctr Energy Res, Inst Tech Phys & Mat Sci, H-1121 Budapest, Hungary.
[Li, Wei] Max Planck Inst Math Sci, D-04103 Leipzig, Germany.
语种:
英文
期刊:
Physical Review E
ISSN:
2470-0045
年:
2022
卷:
105
期:
6
页码:
064139
基金类别:
Fundamental Research Funds for the Central Universities#&#&#CCNU19QN029 National Natural Science Foundation of China#&#&#11505071#&#&#61702207#&#&#61873104 Hungarian Scientific Research Fund#&#&#K123815 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
机构署名:
本校为第一机构
院系归属:
物理科学与技术学院
摘要:
The latest advances of statistical physics have shown remarkable performance of machine learning in identifying phase transitions. In this paper, we apply domain adversarial neural network (DANN) based on transfer learning to studying nonequilibrium and equilibrium phase transition models, which are percolation model and directed percolation (DP) model, respectively. With the DANN, only a small fraction of input configurations (two-dimensional images) needs to be labeled, which is automatically chosen, to capture the critical point. To learn the DP model, the method is refined by an iterative ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com