版权说明 操作指南
首页 > 成果 > 详情

Academic Performance Prediction Based on Multisource, Multifeature Behavioral Data

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Liang*;Chen, Kun;Song, Jie;Zhu, Xiaoliang;Sun, Jianwen(孙建文);...
通讯作者:
Zhao, Liang
作者机构:
[Sun, Jianwen; Song, Jie; Zhao, Liang; Chen, Kun; Zhu, Xiaoliang] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Natl Engn Lab Educ Big Data, Wuhan 430079, Peoples R China.
[Caulfield, Brian; Mac Namee, Brian] Univ Coll Dublin, Insight Ctr Data Analyt, Dublin 4, Ireland.
通讯机构:
[Zhao, Liang] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Natl Engn Lab Educ Big Data, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Academic performance prediction;behavioral pattern;digital campus;long short-term memory (LSTM);machine learning (ML)
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2021
卷:
9
页码:
5453-5465
基金类别:
This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1401300 and Grant 2017YFB1401303, in part by the National Natural Science Foundation of China under Grant 61977030, and in part by the Fundamental Research Funds for the Central University under Grant 20205170443.
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Digital data trails from disparate sources covering different aspects of student life are stored daily in most modern university campuses. However, it remains challenging to (i) combine these data to obtain a holistic view of a student, (ii) use these data to accurately predict academic performance, and (iii) use such predictions to promote positive student engagement with the university. To initially alleviate this problem, in this article, a model named Augmented Education (AugmentED) is proposed. In our study, (1) first, an experiment is con...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com