版权说明 操作指南
首页 > 成果 > 详情

An end-to-end framework for biomedical event trigger identification with hierarchical attention and adaptive cost learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Jinyong;Fang, Dandan;Zhao, Weizhong*;Yang, Jincai*杨进才);Zou, Wen;...
通讯作者:
Zhao, Weizhong;Yang, Jincai
作者机构:
[Jiang, Xingpeng; Yang, Jincai; He, Tingting; Zhang, Jinyong; Zhao, Weizhong; Fang, Dandan; Zhao, WZ] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
[Zhao, Weizhong] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China.
[Zou, Wen] Natl Ctr Toxicol Res, Div Bioinformat & Biostat, Jefferson, AR 72079 USA.
通讯机构:
[Zhao, WZ; Yang, JC] C
[Zhao, Weizhong] G
Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China.
语种:
英文
关键词:
biomedical event trigger identification;end-to-end model;graph convolutional network;syntactic dependency tree;hierarchical attention mechanism;adaptive cost learning
期刊:
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS
ISSN:
1748-5673
年:
2020
卷:
23
期:
3
页码:
189-212
基金类别:
The work is partially supported by the National Key Research and Development Program of China (2017YFC0909502), the National Natural Science Foundation of China (61532008 and 61872157), the Wuhan Science and Technology Program (2019010701011392), the Key Research Program of Central China Normal University (CCNU18JCXK05), the Fundamental Research Funds for the Central Universities (CCNU19TD004), the Guangxi Key Laboratory of Trusted Software (No. kx201905), and the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS19-02). The views presented in this paper are those of the authors and do not necessarily represent those of the US Food and Drug Administration.
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
As a prerequisite step in biomedical event extraction, event trigger identification has attracted growing attention in biomedical research. Existing approaches to biomedical event trigger identification have two major drawbacks: (1) each sentence in a biomedical document is handled separately, which ignores the global context; (2) they fail to treat the issue of imbalanced class which is induced by the sparseness of event triggers in biomedical documents. To improve the performance of biomedical event trigger identification, we propose a deep neural network-based framework which addresses effe...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com