版权说明 操作指南
首页 > 成果 > 详情

Every 3-connected {K (1,3),N (3,3,3)}-free graph is Hamiltonian

认领
导出
Link by 中国知网学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Lin HouYuan*;Hu ZhiQuan
通讯作者:
Lin HouYuan
作者机构:
[Lin HouYuan] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China.
[Hu ZhiQuan; Lin HouYuan] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Lin HouYuan] S
Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China.
语种:
英文
关键词:
Hamiltonian graphs;forbidden subgraphs;claw-free graphs;closure
关键词(中文):
哈密顿;HAMILTON图;非负整数;不相交;吞吐量;三角形;无穷多
期刊:
中国科学:数学英文版
ISSN:
1674-7283
年:
2013
卷:
56
期:
8
页码:
1585-1595
基金类别:
Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 11071096 and 11271149), Hubei Provincial Department of Education (Grant No. D20111110), and Jinan Science and Technology Bureau (Grant No. 20110205). The authors would like to thank the referees for their valuable suggestions and comments.
机构署名:
本校为其他机构
院系归属:
数学与统计学学院
摘要:
For non-negative integers i, j and k, let N i,j,k be the graph obtained by identifying end vertices of three disjoint paths of lengths i, j and k to the vertices of a triangle. In this paper, we prove that every 3-connected {K 1,3,N 3,3,3}-free graph is Hamiltonian. This result is sharp in the sense that for any integer i > 3, there exist infinitely many 3-connected {K 1,3,N i,3,3}-free non-Hamiltonian graphs.
摘要(中文):
为非否定的整数 i, j 和 k,让 N i, j, k 图被鉴别三的结束顶点拆散获得到一个三角形的顶点的长度 i, j 和 k 的路径。在这份报纸,我们证明那是每 3-connected { K 1,3, N 3,3,3 } 免费的图是 Hamiltonian。这结果在意义是锋利的为任何整数 i > 3,在那里无穷地存在许多 3-connected { K 1,3, N i, 3,3 } 免费 non-Hamiltonian 图。

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com